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Calculations using the �exact� fermionic functional renormalization group are usually truncated at the second
order of the corresponding hierarchy of coupled ordinary differential equations. We present a method for the
systematic determination of higher order vertex functions. This method is applied to a study of transport
properties of various correlated quantum dot systems. It is shown that for large Coulomb correlations, higher
order vertex functions cannot be neglected and a static approximation is insufficient.
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I. INTRODUCTION

Recently, electron transport through ultrasmall fermionic
systems �quantum dots� has been investigated intensively.1–5

Motivation for these studies is the potential application of
quantum dots to quantum computers and quantum measure-
ment devices.6 The transport process can be described using
the concept of Coulomb blockade, when Coulomb correla-
tions are large compared to other energy scales in the quan-
tum dot system. However, a detailed analysis of the conduc-
tance and level occupancies of the quantum dot states as a
function of an applied gate voltage shows a rich structure,
which is related to Kondo physics. The theoretical descrip-
tion of such effects requires nonperturbative methods, and
many studies employ Wilson’s numerical renormalization
group �NRG�. Recently, functional renormalization group
techniques have emerged as a new nonperturbative tool to
describe mesoscopic phenomena theoretically.3,4

While the functional renormalization group �fRG� equa-
tion is exact in principle, for practical applications it must be
truncated.7 In particular, most fRG investigations of meso-
scopic systems use a static approximation �i.e., energy inde-
pendent self-energies and higher vertex functions�, and the
hierarchy of differential equations corresponding to the fRG
is truncated at second order. Since fRG calculations trun-
cated at second order are quite “cheap” numerically in com-
parison to NRG or DMRG �density matrix renormalization
group� calculations, it is possible to map out the potentially
huge parameter space of quantum dot systems with reason-
able effort. Functional renormalization group calculations
beyond the static approximation are technically difficult and
require a significant numerical effort as is demonstrated in
model studies for single quantum particles.8,9

The uncertainties incurred by the truncation of the fRG
are not easily controlled. Therefore, it is worth studying the
static approximation beyond second order truncation. More-
over, methods that go beyond the static approximation with
reasonable effort should be developed, and the limits of the
static approximation should be assessed.

It is the purpose of the present paper to investigate the
influence of vertex functions beyond second order in a static
approximation. To this end, we develop a method which en-
ables to extract the complete set of ordinary differential
equations from the underlying functional differential equa-
tion �Sec. II�. Our method uses a different regularization

scheme than the one usually employed for fermionic sys-
tems, which regularizes the free propagator �see, e.g., Refs. 8
and 10�. Our cutoff procedure is adapted from the scheme
used in Ref. 7, which adds a regulator to the action. We are
able to show that the two procedures yield the same set of
ordinary coupled differential equations for the standard hard
cutoff regulator. Furthermore, it is shown that this set is finite
for a fermionic system. �This is in contrast to Bose systems
where this set is infinite.� The number of differential equa-
tions obtained, nevertheless, grows exponentially with the
number of degrees of freedom of the mesoscopic system un-
der consideration.

For quantum dot systems described by only a small num-
ber of electronic states, a study considering all possible ver-
tex functions is feasible �within the constraints of the static
approximation�. In this way, the limits of the static approxi-
mation can be assessed. In order to do that, we investigate
transport properties of various quantum dot devices with dif-
ferent couplings to the external leads �Sec. III�. It is shown
that consideration of higher order vertex functions is impor-
tant in order to describe transport properties of correlated
quantum dots quantitatively, in particular, for systems with
strong Coulomb correlations. However, in many cases, we
find that the set of differential equations to be solved devel-
ops singularities if we increase Coulomb correlations beyond
some critical value, and the renormalization flow becomes
unphysical. This is, of course, not unexpected, and just
shows that for a quantitative analysis of mesoscopic systems
with strong Coulomb correlations, one eventually needs to
go beyond the static approximation. This will be addressed in
a forthcoming publication using the methods developed here,
but including a wave function renormalization in the kinetic
energy term of the action.

II. FUNCTIONAL RENORMALIZATION GROUP SCHEME
FOR INTERACTING FERMIONS

The effective average action �k for interacting fermions
evolves according to the functional renormalization group
equation7,11

�

�k
�k��*,�� = −

1

2
Tr���k

�2���*,�� + Rk�−1�Rk

�k
� . �1�

Here, we assume that the space of possible states of the
fermions is suitably discretized, so that an N-component
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vector of Grassmann variables ����= (�1��� , . . . ,�N���) de-
scribes the evolution of the interacting fermion system in
imaginary time �. Each index �� �1, . . . ,N� represents all
quantum numbers necessary to completely specify a fermi-
onic state, e.g., spin projection � and position j in a linear
chain of electrons. The functional derivative of �k with re-
spect to �* and � is denoted by �k

�2�. The regulator Rk is
introduced in order to suppress thermal and quantum fluctua-
tions at energy or momentum scales k larger than any physi-
cal scale relevant for the problem that is being investigated.
With decreasing k, the regulator gradually “switches on”
such fluctuations until they are fully included at k=0, i.e., at
k=0, the regulator Rk vanishes. A concrete choice for Rk will
be discussed below. The initial condition for the evolution
described by Eq. �1� is obtained from the Hamiltonian defin-
ing the problem to be solved.7 The trace in Eq. �1� is to be
performed over all relevant quantum numbers.

In order to solve a functional differential equation like Eq.
�1� in practice, it must be truncated. This essentially entails a
suitable transformation of the functional differential equation
into an infinite set of coupled partial or ordinary differential
equations. This set of differential equations is then truncated
at a suitable order. The standard technique expands both
sides of the equation for the effective average into a Taylor
series about a � independent vector �0 using ����=�0

+����. One then obtains an infinite set of ordinary or partial
differential equations for the Taylor coefficients of the vari-
ous powers in ����.

For most practical applications, the truncation procedure
described so far is still too general, and we need further
simplifications: One standard way to proceed is to prescribe
the functional form of the effective average action more spe-
cifically. In this paper, we assume that the effective average
action takes the form

�k��*,�� = 	
0

�

d�

�=1

N

�
�
*���

�

��
����� + Uk„�*���,����… ,

�2�

where the “effective potential” Uk does not depend on de-
rivatives of the Grassmann variables with respect to the
imaginary time �. By assuming the specific form �2� one
obtains energy independent �static� self-energies and higher
order vertex functions. Of course, more general functional
forms for �k lead to energy dependent vertex functions �e.g.,
a wave function renormalization Zk(�*��� ,����) multiplying
the kinetic energy term in Eq. �2��, but such a truncation will
not be investigated in this paper.

Since the effective potential Uk must be a Grassmann sca-
lar, its form in terms of ���� is fairly well determined: It
must be a linear combination of all possible products of el-
ements of the set of Grassmann variables ��

�
* ,��� with an

even number of factors. Due to the nilpotency of the Grass-
mann variables, the number of possible products is finite,
i.e., the number of terms in the linear combinations is finite.
Since the number of particles is conserved in the physical
models that we want to investigate, we only need to include

terms with an equal number of �
�
* and ��, which correspond

to fermion creation and destruction, respectively.
Here is an example for N=2: Due to the nilpotency of the

Grassmann variables, the effective potential has the general
form

Uk��*,�� = a0,k + �1
*�1a11,k + �2

*�2a22,k + �1
*�2a12,k

+ �2
*�1a21,k + �1

*�2
*�1�2a1212,k. �3�

The k-dependent coefficients in this expression will be called
“running couplings.” The running couplings have direct
physical significance: Since the effective average action at
k=0 is the generator of the vertex functions, each running
coupling corresponds to an n-point vertex function, where n
corresponds to its number of Grassmann factors. In particu-
lar, a0 is directly related to the ground state energy of the
fermion system, and the aij,k correspond to the self-energies.
For simplicity, the k dependence of the couplings will not
always be explicitly indicated.

Following the general procedure outlined above, we
will now determine flow equations for the running coup-
lings. To this end, we first expand the effective average
action �2� about �-independent Grassmann variables �0
= ��01, . . . ,�0N�, i.e., �����=�0�+�����, with �0�=���0�.
Up to second order in �����, the expansion is given by

�k��*,�� = �Uk
�0���0

*,�0� +
1

2
	

0

�

d�	
0

�

d���†���

	
k
�2���0

*,�0������ + . . . , �4�

with ����= (�1��� , . . . ,�N��� ,�
1
*��� , . . .�N*���). The lowest

order term is determined by the effective potential

Uk
�0���0

*,�0� = �Uk„�*���,����…��*=�=0. �5�

The second order term contains the second derivative of the
effective potential


k
�2���0

*,�0� = �E��� + Uk
�2���0

*,�0����� − ��� ,

Uk,��
�2� ��0

*,�0� = � �2Uk

������
† �

�*=�=0

, �6�

with E�=diag�1, . . . ,1 ,−1 , . . . ,−1�. The term in first order in
� drops out. For example, for N=2 assuming the symmetry
a12=a21, one easily finds from Eq. �3� the matrix
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Uk
�2� =

a11 − �02
* �02a1212 a12 + �02

* �01a1212 0 �01�02a1212

a12 + �01
* �02a1212 a22 − �01

* �01a1212 − �01�02a1212 0

0 �01
* �02

* a1212 − a11 + �02
* �02a1212 − a12 − �01

* �02a1212

− �01
* �02

* a1212 0 − a12 − �02
* �01a1212 − a22 + �01

* �01a1212

� . �7�

In order to do the � integration in Eq. �4�, we Fourier
transform the Grassmann variables �� using

����� =
1

��



n

ei�n���,n, �8�

with the fermionic Matsubara frequency �n= �2n+1� /�,
and obtain for the effective average action

�k��*,�� = �Uk
�0� +

1

2 

n=−�

�

�n
†�i�nE + Uk

�2���n. �9�

Here, E denotes the unit matrix. Moreover, we assume a
regulator which is diagonal in Matsubara frequency space



n

�
n
*Rk,n�n =

1

2

n

�n
†Rk,nE��n. �10�

Inserting �k and Rk into Eq. �1� and comparing terms up
to order zero in �, we obtain the following equation:

�

�k
Uk

�0� = −
1

2�



n

Tr K−1 �

�k
Rk,n, �11�

with K= �i�n+Uk
�2��E�+Rk,nE. From this equation, we extract

a set of ordinary differential equations for the various cou-
pling constants by comparing the coefficients of the various
monomials of Grassmann variables. In order to do this, it is
necessary to invert the Grassmann matrix K. The matrix is
inverted using the formula

K−1 = �K0 + K1�−1 = K0
−1


m=0

N

�− K1K0
−1�m, �12�

where K0 is chosen to be the body of K �Grassmann scalar
part of K� and K1 its soul �Grassmann nonscalar part�. That
the sum in Eq. �12� only runs up to N is due to the fact that
each matrix element of K1 is bilinear in the Grassmann vari-
ables, so that after N factors of K1 the sum must terminate.
Obviously, the inverse of K does not exist if the determinant
of the body of K vanishes. In this case, the renormalization
scheme is not well defined.

At T=0, the sum over the Matsubara frequencies in Eq.
�11� converts into an integral

1

�



n

→ 	
−�

� d�

2
. �13�

This integral is most easily evaluated for the sharp cutoff
regulator

Rk��� = Ck��k2 − �2� , �14�

with C a suitably chosen large constant. This regulator ful-
fills the general requirements that it vanishes for k=0 and it
dominates the effective average action for k→�. Further-
more, it has the advantage that the integration over the Mat-
subara frequencies can be done analytically. Some technical
issues related to this integration will be discussed in the Ap-
pendix.

An often used approach to the fermionic functional renor-
malization group is to apply a hard cutoff in such a way that
the free propagator at large k is suppressed, and propagation
is gradually switched on when k is reduced �see, e.g., Refs.
10 and 8�. In the following, we shall see that this �standard�
method and the cutoff employed here yield identical sets of
flow equations.

With the results from the Appendix, we can write Eq. �11�
for the hard cutoff regulator �14� in the following form:

d

dk
a0,k =

1

4



�=�k

log det�1

k
Gk

−1�i��� , �15�

d

dk
�Uk

�0� − a0,k� = −
1

4


m=1

N



�=�k

1

m
Tr�− MkGk�i���m.

�16�

Equation �16� represents a finite set of coupled ordinary dif-
ferential equations for the running couplings. The block-
diagonal 2N	2N matrix Gk�i�� is given by

Gk�i�� = �gk�i�� 0

0 gk�− i��
� = �bk�i�� 0

0 bk�− i��
�−1

,

�17�

and the matrix elements of the N	N submatrix bk�i�� are
essentially determined by the self-energies

b��,k�i�� = a��,k + i����. �18�

The 2N	2N matrix Mk represents the soul of Uk
�2�E� and

contains all running couplings except the self-energies.
Equations �15� and �16� are the main results of this sec-

tion. From these results, the flow equations for the various
running couplings can be directly extracted up to the desired
order by comparing the coefficients of the different monomi-
als of Grassmann variables. As will be discussed further be-
low, up to second order in m, Eqs. �15� and �16� are equiva-
lent to results obtained in the literature using a hard cutoff on
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the free propagator. The advantage of Eqs. �15� and �16� is
that they allow an easy and systematic construction of higher
order contributions.

In order to illustrate the use of Eqs. �15� and �16�, we
extract the flow equations for N=2 assuming the symmetry
a12=a21 and purely real running couplings. In this case, the
submatrix gk�i�� is given by

gk�i�� =
1

b11b22 − b12
2 � b22 − b12

− b12 b11
� , �19�

with b�� defined in Eq. �18�. The matrix Mk can be directly
read off from Eq. �7�

Mk = a1212,k
− �02

* �02 �02
* �01 0 �01�02

�01
* �02 − �01

* �01 − �01�02 0

0 − �01
* �02

* − �02
* �02 �01

* �02

�01
* �02

* 0 �02
* �01 − �01

* �01

� .

�20�

After some algebra, one obtains the following flow equations
for the various running couplings:

a0� =
1


Re log

b11b22 − b12
2

k2 ,

aij� = −
a1212


Re

bij

b11b22 − b12
2 ,

a1212� = −
a1212

2


Re

1

b11b22 − b12
2

−
a1212

2

2

b11
* b22 + b11b22

* − 2b12b12
*

�b11b22 − b12
2 ��b11

* b22
* − b12

*2�
. �21�

The prime indicates a derivative with respect to k, and we do
not indicate explicitly the k dependence of the running cou-
plings.

For N=2, the result Eq. �21� is complete within the static
approximation. This means that, due to the finite number of
Grassmann monomials which can be constructed from four
Grassmann variables, there will be no higher order equa-
tions. The right hand side of the equations for aij arises from
m=1 in the sum over m in Eq. �16�, while the right hand side
of the equation for a1212 is the contribution from m=2. Equa-
tions �21� are equivalent to Eqs. �26� and �27� in Ref. 4,
where they are used to study electron transport through a
single quantum dot. Moreover, the equations for aij in Eq.
�21� are equivalent to Eq. �1� in Ref. 3, which was used to
show that there are unusual correlation induced resonances in
a polarized double dot system. �In order to show the equiva-
lence, one must set a1212,k to its initial condition a1212,k=U.�

We now discuss the structure of the set of differential
equations obtained from Eq. �16� for larger N using N=4 as
an example. As can be easily established, the number of dif-
ferential equations grows exponentially. In particular, for N
=4, we find 35 coupled equations corresponding to the num-
ber of Grassmann monomials we can build from eight Grass-

mann variables in a system with particle conservation. If
symmetries between these Grassmann monomials are con-
sidered, the number of equations decreases, e.g., for a system
of four electrons with spin symmetric interactions, we only
obtain 26 independent equations. It turns out that the result-
ing �complete� set of equations is quite formidable and can
only be generated with the help of computer assisted sym-
bolic computation. Nevertheless, some features of this set of
equations can be established in general. These follow from
the structure of Eq. �16�: A term of order m in the sum over
m in Eq. �16� only contributes to equations for coefficients
with at least 2m indices. Such a term contains m propagators
Gk. For example, for N=4, the term m=4 in the sum over m
only contributes to the equation for the running coupling
a12341234. Of course, the equation for this particular running
coupling also receives contributions from m=1, 2, and 3.

To further illustrate the use of Eq. �16�, we derive equa-
tions suitable for the description of a one-dimensional chain
of nearest neighbor coupled spinless electrons �see, e.g., Ref.
12�. To this end, we first need to write down the effective
potential in terms of the running couplings

U��*,�� = 

j=1

N

ajj� j
*� j + aj,j+1�

j
*� j+1 + aj,j−1�

j
*� j−1

+ U

j=1

N

�
j
*� j� j+1

* � j+1 �22�

with periodic boundary conditions �0=�N. Here, for sim-
plicity, it is assumed that the density-density interaction
strength U does not renormalize and remains at its initial
value. In order to obtain the flow equations for the self-
energies ajj�, we consider the term m=1 in the sum over m in
Eq. �16�. One easily finds

Tr MkGk = U

j=1

N

�gj−1,j−1�i�� + gj+1,j+1�i����0j
* �0j

− �gj,j+1�i���0j
* �0j+1 + gj,j−1�i���0j

* �0j−1�

+ �i� ↔ − i�� . �23�

Inserting this result into Eq. �16� and comparing correspond-
ing terms yield the flow equations

ajj� =
U

2



�=�k

�gj+1,j+1�i�� + gj−1,j−1�i��� ,

aj,j�1� = −
U

2



�=�k

gj,j�1�i�� . �24�

This result agrees with the one obtained using a hard cutoff
on the free propagator; it is used to study, e.g., persistent
currents in mesoscopic rings in Ref. 12.

III. TRANSPORT THROUGH CORRELATED
QUANTUM DOTS

In the following, we study transport through various
quantum dot �QD� systems using the effective potential �i.e.,
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static� approximation introduced in the previous section. We
will emphasize the role of higher order contributions beyond
m=2 in the sum over m in Eq. �16�. Up to m=2, the equa-
tions resulting from Eq. �16� can be shown to be equivalent
to the flow equations employed in Ref. 4. In order to eluci-
date the role of higher order contributions, we will study
similar parameter sets as considered in Ref. 4. In some cases,
calculations using Wilson’s numerical renormalization group
are available for comparison.

The standard model Hamiltonian for the description of
QD systems �depicted schematically in Fig. 1� consists of
three essential terms: the dot Hamiltonian HD, the Hamil-
tonian of the noninteracting electrons of the leads HE, and
the interaction HDE between the QD and the leads,

H = HD + HE + HDE. �25�

The dot Hamiltonian HD is given by three terms

HD = 

j�

�� j� + Vg�dj�
† dj� − 


j�j�,�

tjj�dj�
† dj�� + H.c.

+
1

2 

j j�,���

Ujj�
���nj�nj���, �26�

where dj�
† �dj�� creates �annihilates� an electron in state j

with spin �, respectively. The site occupancy operator is de-
noted by nj�=dj�

† dj�. The dot levels � j� may be shifted by
application of a gate voltage Vg. The matrix elements tjj�
represent hopping amplitudes between dot levels, and Ujj�

���

describes electron-electron interactions. Of course, Ujj
��=0.

The noninteracting lead electrons created �annihilated� by
cj�l

† �cj�l� at the Fermi surface of the right lead �l=R� and left
lead �l=L� are described by the Hamiltonian

HE = − �h

j�l

cj�l
† c�j+1��l + H.c. �27�

with a hopping amplitude �h between neighboring sites. The
coupling of the leads to the quantum dot levels is modeled by
a tunneling Hamiltonian

HDE = − 

j�l

tj
lc0,�,l

† dj,� + H.c., �28�

where electrons can tunnel from or to the dot levels from site
0 of the right or left lead. The tunneling matrix elements tj

l

are assumed to be real in the present paper. They determine
the broadening of the dot levels as will be discussed in more
detail below.

The Hamiltonian H is translated into an action suitable for
a coherent state path integral formulation �see, e.g., Ref. 13�
essentially by replacing creation and annihilation operators
by corresponding Grassmann variables. Physical observables
at temperature T=0 are obtained from the renormalized
Green’s functions of the correlated dot system �see Eq. �17��,

gij
−1�i�� = i��ij + aij,k=0. �29�

In a static approximation, the aij,k=0 do not depend on �. The
dot Green’s functions g are N	N matrices, where N is the
total number of electronic states included in the description
of the quantum dot system. The matrix elements of the dot

Hamiltonian � j�+Vg, tjj�, and Ujj�
��� provide the necessary

initial values for the corresponding flow equations. All other
flow equations start the flow from an initial value of zero.

Since the dot system is coupled to the leads via the tun-
neling Hamiltonian HDE, the dot levels acquire an imaginary
part which is determined using a standard projection of the
full Hamiltonian on the dot Hamiltonian as described in de-
tail, e.g., in Refs. 14 and 15,

g̃ij
−1�i�� = i��ij + aij,k=0 − i sgn����ij , �30�

with the imaginary part given by

�ij = �0 

l=L,R

ti
ltj

l �31�

in terms of the density of states of the lead electrons at the
Fermi level �0�1 /�h �in the wide band approximation�.
Usually, the absolute values of the tunneling matrix elements
are given in terms of the parameters �i

l=�0�ti
l�2.

From this propagator, the average dot occupancies �nj�� at
T=0 may be easily calculated using

�nj�� =
1

2
	

−�

�

d�ei�0+
g̃�i�� , �32�

where the exponential factor enforces convergence of the
integral at large �. To relate the dot propagator to the con-
ductance is quite an intricate problem which has been ad-
dressed using both the Landauer-Büttiker16 and the Kubo
formalisms.17 At T=0, one obtains for the conductance G the
rather intuitive result

G = 4
e2

h �
i,j �0ti
Rtj

Lg̃ij�0��2
, �33�

where the sum runs over all dot levels connected to the leads
via nonvanishing tunneling matrix elements tj

l. The phase of
the sum in Eq. �33� is known as the transmission phase. This
quantity is accessible experimentally and will also be briefly
discussed in the following.

A. Polarized double dot

We first review calculations for a polarized double dot
corresponding to two states with �1�=�2�=0. Each state is
occupied by only one electron as depicted in Fig. 1. The
system is spin polarized, which may be achieved by putting
it into a strong magnetic field. Studies of this system using

L R

FIG. 1. �Color online� Polarized double quantum dot coupled to
left and right leads. The arrows between the dots and the leads
symbolize the tunnel couplings tj

l. The arrow between the dots sym-
bolizes interdot Coulomb interactions.
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different methods were presented, e.g., by König and Gefen,1

Sindel et al.2, as well as Meden and Marquardt.3

The effective potential for this problem corresponds to
Eq. �3�, and the flow equations for the running couplings are
given by Eq. �21�. It is very easy to solve these equations
numerically. In Fig. 2, we show results for the parameter set
given in the figure caption. This parameter set with the rather
large Coulomb interaction U /�=8 and t12=0 has been taken
from Ref. 3. �For convenience, here and in the following, all
energies will be given in units of �=
il�i

l.� The figure shows
Coulomb correlation induced resonances close to Vg=0. The
dashed curves agree with the results of Ref. 3, which were
calculated neglecting the renormalization of the Coulomb in-
teractions. The full curves include this renormalization, and
the figure clearly shows its importance �see also Ref. 18�. We
would like to emphasize that within the static approximation,
there are no higher order vertex functions to be considered,
since the set of equations �21� is complete. It is, therefore,

possible to apply these equations at even larger Coulomb
interactions. One finds that with increasing Coulomb interac-
tions, the two outer Coulomb blockade peaks seen in Fig. 2
shift further outward and the exponentially sharp correlation
induced peaks in the center shift exponentially close to zero.
The dot level occupancies displayed in Fig. 2 show the char-
acteristic charge oscillations discussed in detail in Refs. 1
and 2.

B. Side-coupled double dot

Now we consider a side-coupled double dot with spin as
depicted in Fig. 3. Only one dot is coupled to the leads
directly. For this system, the set of coupled flow equations is
much more complicated than for the polarized double dot
briefly reviewed above, and higher order equations m�2
play a role. In fact, assuming spin symmetric interactions, we
have to solve a set of 26 coupled equations as was pointed
out before. We will investigate two physically different
cases: large interdot hopping t12�� and small interdot hop-
ping t12��. In both cases, we study the influence of intradot
Coulomb interactions U, which are chosen to be equal on
both quantum dots. Interdot Coulomb interactions are set ini-
tially to zero, but they evolve to finite values during the
renormalization run. In fact, all 26 running couplings �vertex
functions� considered here renormalize to nonzero values in
certain gate voltage ranges, some of them attaining ex-
tremely large values. Side-coupled double dots have been
investigated by Cornaglia and Grempel19 and by Zitko and
Bonca20 using the NRG, as well as by Karrasch et al.4 using
the fRG truncated at m=2.

We start with a discussion of dot systems with large in-
terdot hopping described by the parameter set t12 /�=4,
U /�=8, and �1�=�2�=0, and other parameters given in the
caption of Fig. 4. The same parameter set was discussed in
Refs. 4 and 19. Rough estimates discussed in Ref. 19 suggest
that one should observe conductance peaks located at Vg
� � �U /2+ t12� with a width given by U /2. This is, indeed,
seen in Fig. 4�a�. In this figure, we compare calculations
truncated at different flow orders. The dashed curves show
calculations truncated at m=2 as in Ref. 4. The full curves
include all orders up to m=4, which is the maximum order
possible in this system. We observe that the inclusion of the
higher orders has the effect of somewhat increasing the
width of the peaks in accordance with the NRG calculations
presented in Ref. 19. The dot occupation numbers �Figs. 4�b�
and 4�c�� show slightly more pronounced shoulders if higher
order effects m�2 are included within the gate voltage
ranges of peak conductance.

Now we increase the intradot Coulomb interaction to
U /�=12. According to the discussion presented in Ref. 20,
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FIG. 2. �Color online� �a� Conductance G and occupancies �b� n1

and �c� n2 for a polarized double dot: U /�=8, �1
L=0.27�, �1

R

=0.33�, �2
L=0.16�, �2

R=0.24�, t2
R�0, and all other ti

l positive.
Dashed lines, truncation at m=1; full lines, truncation at m=2.

FIG. 3. �Color online� Side-coupled quantum dot device.
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the peaks should become more boxlike in shape. This is,
indeed, seen in Fig. 5�a�, but only if the higher order contri-
butions m�2 are included. A calculation truncating the set
of equations at m=2 shows conductance peaks with a
Lorentzian shape in disagreement with NRG calculations.20

The conductance peaks shown in Fig. 5�a� are not com-
pletely flat as suggested by the NRG calculations. This prob-
ably points to effects beyond the static approximation em-
ployed here. The occupancies of the two dots are shown in
Figs. 5�b� and 5�c�. Here, the effect of higher order contri-
butions is quite important as well. The single occupancies ni
even show a nonmonotonic behavior in the gate voltage
ranges of peak conductance. Similarly, the transmission
phase develops a shoulder in these gate voltage ranges which
is not seen in calculations truncated at m=2.

If one increases the intradot Coulomb interaction further,
e.g., to U /�=16, one observes conductance peaks which are
flat, but within this flat region the renormalization procedure

employed here becomes ill defined. Technically, this can be
traced to the fact that somewhere along the renormalization
flow, the renormalized self-energies of the indirectly coupled
dot vanish. At this point, the body of the matrix K which was
introduced in the previous section vanishes, all flow equa-
tions develop a singularity, and the renormalization flow
stops. The singular renormalization flow likely indicates a
failure of the static approximation.

Let us now discuss a physical situation with small interdot
hopping: Fig. 6 shows a calculation using the parameters
t12 /�=0.2, U /�=2, and �1�=�2�=0. This parameter set was
also investigated in Refs. 4 and 19. As was pointed out by
the authors of Ref. 4, the calculation truncated at m=2 yields
a conductance minimum, which is too flat in comparison to
NRG calculations.19 As is obvious from Fig. 6�a�, inclusion
of higher order effects improves this situation. However,
comparison with the NRG data presented in Ref. 19 still
shows quantitative differences in this gate voltage region.
Since our calculations are not truncated within the con-
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FIG. 4. �Color online� Side-coupled double dot with large inter-
dot hopping: t12 /�=4, U /�=8, and �1

L=�1
R=� /2. Full lines, trun-

cation order m=4; dashed lines, truncation order m=2. �a� Conduc-
tance G, �b� occupancy of directly coupled dot n1, and �c�
occupancy of side-coupled dot n2.
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FIG. 5. �Color online� Side-coupled double dot with large inter-
dot hopping: t12 /�=4 and U /�=12. Other parameters and notation
as in Fig. 4.
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straints of the static approximation, these differences must be
attributed to effects beyond the static approximation.

Of course, the structure obtained for the conductance and
the occupancies as a function of the gate voltage can be
related to the calculated spectrum of the dot system. In Fig.
7, we show the energy level for a spin up electron on the
directly coupled dot given by a11 and the energy level of a
spin up electron on the side-coupled dot a33 for the parameter
set used in Fig. 6. Again, we compare calculations truncated
at m=2 with a full calculation in the static approximation.
Obviously, truncating at m=2 yields significantly too small
energy eigenvalues, in particular, for the indirectly coupled
dot.

If we increase the intradot Coulomb interaction from
U /�=2 to U /�=2.5, we observe a picture similar to the one
shown in Fig. 6 with the amplitude of the charge oscillations
on the dots significantly increased. Already for U /�=3, the
set of flow equations develops singular behavior as was dis-
cussed above for the case with large interdot hopping. This

again indicates that a truncation scheme based on a static
approximation fails for large Coulomb interactions.

C. Parallel coupled double dot

Finally, we consider a parallel coupled double dot as de-
picted in Fig. 8. The set of equations to be solved is the same
as for the side-coupled dot.

We study a parameter set where all ti
l are chosen positive

with the tunneling strengths �i
l given numerically in the cap-

tion of Fig. 9. We choose Ujj�
��� /�=2 for all intradot and

interdot interaction matrix elements and t12=0. This param-
eter set has also been investigated in Ref. 4. Due to the large
Coulomb interaction, correlation induced resonances are ob-
served similar to the spin-polarized system briefly reviewed
in Sec. III A. However, as is seen in Fig. 9, calculations
truncated at m=2 show significant quantitative differences in
comparison to the full calculation up to m=4: The reso-
nances are much more pronounced and the valley between
these resonances is somewhat narrower. This trend continues

if we increase the Coulomb interactions to Ujj�
��� /�=4.
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FIG. 6. �Color online� Side-coupled double dot with small in-
terdot hopping: t12 /�=0.2 and U /�=2. Other parameters and nota-
tion as in Fig. 4.
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FIG. 7. �Color online� Energy eigenvalues of the spin up level in
directly coupled dot �a11� and the indirectly coupled dot �a33� as a
function of the gate voltage for the parameter set of Fig. 6.

FIG. 8. �Color online� Parallel coupled quantum dot.
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Results are shown in Fig. 10. The amplitude of the charge
oscillations of the dot with the stronger tunnel coupling to
the leads is significantly underestimated in a calculation ne-
glecting higher order contributions.

Of course, the question arises, to what extent the static
approximation is still valid in this parameter region. In order
to answer this question, calculations beyond the static ap-
proximation must be performed. Such calculations are pres-
ently under way.

IV. CONCLUSIONS

The functional renormalization group has been proposed
as a useful new tool for the investigation of interacting me-
soscopic systems.3,4 The advantage of the method in com-
parison to NRG or DMRG calculations appears to be its
rather moderate numerical cost. However, this advantage is
due to some rather drastic approximations, which are not
easily controlled. In this paper, we carry out the first steps

that are needed to go beyond the standard set of approxima-
tions usually employed to solve the fermionic fRG in prac-
tice. Still within the constraints of a static approximation, we
develop a method which systematically generates the com-
plete set of ordinary differential equations corresponding to
the fRG. However, the method proposed here is not limited
to the static approximation. It can be extended straightfor-
wardly to include nonstatic effects, e.g., by including a wave
function renormalization in the kinetic energy term of the
action.

We demonstrate by means of a number of calculations of
transport properties of quantum dot systems that inclusion of
higher order equations definitely improves fRG calculations
for large Coulomb interactions. This is judged by a compari-
son to NRG results. However, if one increases Coulomb in-
teractions beyond some critical value, the static approxima-
tion fails as is signalled by singularities developing during
the renormalization flow. In order to overcome such prob-
lems and to further improve the agreement between NRG
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FIG. 9. �Color online� Parallel coupled double dot: t12 /�=0,
U /�=2, �1

L /�=0.5, �1
R /�=0.25, �2

L=0.07, and �2
R=0.18. Other no-

tation as in Fig. 4.
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FIG. 10. �Color online� Parallel coupled double dot: t12 /�=0,
U /�=4, �1

L /�=0.5, �1
R /�=0.25, �2
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and fRG calculations, it is necessary to go beyond the static
approximation. Work in this direction is presently under way.
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APPENDIX: INTEGRAL OVER THE MATSUBARA
FREQUENCIES

In order to perform the rather singular integral over the
Matsubara frequencies � for the hard cutoff regulator Eq.
�14�, we need the formula21

��x − y�f„��x − y�… → ��x − y�	
0

1

dsf�s� . �A1�

The � integration leading from Eq. �11� to Eq. �15� is then
performed as follows:

Tr	
−�

� d�

2
�G−1�i�� + Ck��k2 − �2�E�−1 �

�k
Ck��k2 − �2�

=
2N


+ Tr	

−�

� d�

2
�G−1�i�� + Ck��k2 − �2�E�−1

	2Ck2��k2 − �2� , �A2�

with G−1�i��= �i�+uk
�2��E�. The quantity uk

�2� represents the
body of Uk

�2�. In the first term, we already performed the limit
C→�. The second term is now evaluated with the help of
Eq. �A1�

Tr	
−�

� d�

2
��G−1�i�� + Ck��k2 − �2�E��−1

	Ck���k − �� + ��k + ���

=
1

2



�=�k

Tr	
0

C

ds��1

k
G−1�i�� + s�E�−1

= −
1

2



�=�k

Tr log�1

k
G−1�i��� + O�log C� .

Therefore, we obtain the equation

a0� =
1

4



�=�k

log det�1

k
G−1�i��� .

The infinite constant gets absorbed into a suitably modified
initial condition.

With similar steps as above, one obtains the result given
in Eq. �16�. Here, it is important to use the fact that the
factors under the trace may be permuted cyclically.
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